If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x)^2+x^2=320
We move all terms to the left:
(2x)^2+x^2-(320)=0
We add all the numbers together, and all the variables
3x^2-320=0
a = 3; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·3·(-320)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*3}=\frac{0-16\sqrt{15}}{6} =-\frac{16\sqrt{15}}{6} =-\frac{8\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*3}=\frac{0+16\sqrt{15}}{6} =\frac{16\sqrt{15}}{6} =\frac{8\sqrt{15}}{3} $
| 5x-1/30-2x+1/5=9x+13/30-3x-5/6 | | (3x-15)(x+2)=0 | | 15a-49=5a | | -7n+1=1 | | 1/2+q=2/3 | | 15a-5a=-49 | | 14x+8=0 | | 3(4-1)=13x | | 12/10=x/25 | | 10x^2+18x-6=-7x+11 | | 8(6-3x)-2•(2x-4)=3(-x-3) | | (z+6)=-14 | | 45r^2-115r-60=0 | | 2=(10+x)/3 | | 2=(10+x)3 | | 3(x+3)-(x-1)=2(4-3x) | | 3(x=3)-(x-1)=2(4-3x) | | 4(2x-4)=40 | | 9x+1/x=0 | | 4(2x-4)=4 | | 3(a+2)=40 | | |5x-1|=-10 | | 10÷3x=63 | | y=2-4+3 | | 13x=10x-3;x | | 8(4w+7)=-11 | | 4x-26=14x+4 | | 6-5=(x+4) | | 221-u=278 | | 9y+5+67=180 | | 3b+5=2b+7 | | 9x=90-6x |